skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kutsovsky, Yakov"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rubbers reinforced with rigid particles are used in high-volume applications, including tyres, dampers, belts and hoses1. Many applications require high modulus to resist excessive deformation and high fatigue threshold to resist crack growth under cyclic load. The particles are known to greatly increase modulus but not fatigue threshold. For example, adding carbon particles to natural rubber increases its modulus by one to two orders of magnitude1,2,3, but its fatigue threshold, reinforced or not, has remained approximately 100 J m−2 for decades4,5,6,7. Here we amplify the fatigue threshold of particle-reinforced rubbers by multiscale stress deconcentration. We synthesize a rubber in which highly entangled long polymers strongly adhere with rigid particles. At a crack tip, stress deconcentrates across two length scales: first through polymers and then through particles. This rubber achieves a fatigue threshold of approximately 1,000 J m−2. Mounts and grippers made of this rubber bear high loads and resist crack growth over repeated operation. Multiscale stress deconcentration expands the space of materials properties, opening doors to curtailing polymer pollution and building high-performance soft machines. 
    more » « less
  2. Traditional polymer processing breaks polymer chains. The resulting networks of short chains have a low fatigue threshold. This paper shows that a low-intensity process preserves long chains, leading to a network of an increased fatigue threshold. 
    more » « less